

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくや

1/43

SPECTRALGAN: Spectral Data Augmentation Using Generative Adversarial Networks for wood-type classification

Attaullah Buriro¹

¹Free University of Bozen-Bolzano

attaullah.buriro@unibz.it

16.9.2021

▶ What is Data augmentation and why it is needed?

- What is Data augmentation and why it is needed?
- Why Generative adversarial Networks (GANs) for Data augmentation?

- What is Data augmentation and why it is needed?
- Why Generative adversarial Networks (GANs) for Data augmentation?
- Our GAN

- What is Data augmentation and why it is needed?
- Why Generative adversarial Networks (GANs) for Data augmentation?
- Our GAN
- Methodology

- What is Data augmentation and why it is needed?
- Why Generative adversarial Networks (GANs) for Data augmentation?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - - - の Q ()

- Our GAN
- Methodology
- Preliminary Results

Data Augmentation Basics

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

- Advance machine learning models (e.g., CNN) perform well on increased number of samples
 - As collecting and labeling of data could be exhausting and may incur expenses

- Advance machine learning models (e.g., CNN) perform well on increased number of samples
 - As collecting and labeling of data could be exhausting and may incur expenses
- Data augmentation is useful to improve performance of machine learning models by adding transformed or synthetic examples to the training datasets.

- Advance machine learning models (e.g., CNN) perform well on increased number of samples
 - As collecting and labeling of data could be exhausting and may incur expenses
- Data augmentation is useful to improve performance of machine learning models by adding *transformed* or *synthetic* examples to the training datasets.
- Geometric Transformations (making simple alterations on visual data) has shown to be popular. However, Generative Adversarial Networks (GANs) are gaining the required momentum. Unlike geometric tranformation, GAN generate new synthetic samples

WHAT IS DATA AUGMENTATION?

Techniques used to increase the amount of data by adding slightly modified copies of already existing data or newly created synthetic data from existing data -Wikipedia.

WHAT IS DATA AUGMENTATION?

Techniques used to increase the amount of data by adding slightly modified copies of already existing data or newly created synthetic data from existing data - Wikipedia.

¹https://research.aimultiple.com/data-augmentation/

DATA AUGMENTATION USING GANS

GAN generates synthetic data to match sample data while ensuring that the important statistical properties of sample data are reflected in synthetic data.

DATA AUGMENTATION USING GANS

- GAN generates synthetic data to match sample data while ensuring that the important statistical properties of sample data are reflected in synthetic data.
- It's estimated that by 2024, 60% of the data used for the development of AI and analytics projects will be synthetically generated

By 2030, Synthetic Data Will Completely Overshadow Real Data in AI Models

Generative Adversarial Networks

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

GENERATIVE ADVERSARIAL NETWORKS

 GANs have shown to be very popular in almost every field, i.e., image & video generation, speech generation, style transfer, biometrics, etc

GENERATIVE ADVERSARIAL NETWORKS

- GANs have shown to be very popular in almost every field, i.e., image & video generation, speech generation, style transfer, biometrics, etc
- GAN Architecture
 - Two networks, i.e G for generator, and D for discriminator, are staked

NETWORKS DEVELOPMENT USING MULTILAYER PERCEPTRON

DISCRIMINATOR

<ロ > < 団 > < 三 > < 三 > ミ の < で 11/43

Methodology

<ロ > < □ > < □ > < 三 > < 三 > < 三 > < ○ < 12/43

 Hyperspectral Wood dataset² of 3 classes (Heartwood Vs Sapwood Vs Background)

 $^{^{\}rm 2}{\rm provided}$ by Microtec - thanks to them

- Hyperspectral Wood dataset² of 3 classes (Heartwood Vs Sapwood Vs Background)
- ▶ # of processed cuboids = 132 + 132 + 66 + 66 = 396 (32×32×320)

 $^{^{\}rm 2}{\rm provided}$ by Microtec - thanks to them

- Hyperspectral Wood dataset² of 3 classes (Heartwood Vs Sapwood Vs Background)
- ▶ # of processed cuboids = 132 + 132 + 66 + 66 = 396 (32×32×320)
- ▶ # of training cuboids = 264 (132 for each class)
- ▶ # of testing cuboids = 132 (66 for each class)

²provided by Microtec - thanks to them

- Hyperspectral Wood dataset² of 3 classes (Heartwood Vs Sapwood Vs Background)
- ▶ # of processed cuboids = 132 + 132 + 66 + 66 = 396 (32×32×320)
- # of training cuboids = 264 (132 for each class)
- # of testing cuboids = 132 (66 for each class)
- # of training samples = 270336
- ▶ # of testing samples = 135768

² provided by Microtec - thanks to them

- Hyperspectral Wood dataset² of 3 classes (Heartwood Vs Sapwood Vs Background)
- ▶ # of processed cuboids = 132 + 132 + 66 + 66 = 396 (32×32×320)
- # of training cuboids = 264 (132 for each class)
- # of testing cuboids = 132 (66 for each class)
- # of training samples = 270336
- # of testing samples = 135768
- We have a baseline CNN-based Spectral classifier (implemented by Sun Boyuan) for evaluation

² provided by Microtec - thanks to them

SPECTRAL Classifier

We have a baseline CNN-based Spectral classifier for evaluation

```
class Cifar10(nn.Module):
def init (self, in channels=1,
             num classes=2,
             kernel size=(1, 3),
             padding size=(0, 1),
             num feature fc=64):
    super(Cifar10, self). init ()
    self.conv1 = nn.Conv2d(in channels, 32, kernel size=kernel size, padding=padding size)
    self.conv2 = nn.Conv2d(32, 32, kernel_size=kernel_size, padding=padding_size)
    self.conv3 = nn.Conv2d(32, 32, kernel size=kernel size, padding=padding size)
    #self.pool = nn.MaxPool2d((1, 3), stride=(1, 2),padding=(0,1))
    self.pool = nn.MaxPool2d((1, 3),stride=(1,2))
    self.fc1 = nn.Linear(32*39, num feature fc)
    self.fc2 = nn.Linear(num feature fc. 2)
def forward(self. x):
    in size = x.size(0)
    x = F.relu(self.conv1(x))
    x = self.pool(x)
    x = F.relu(self.conv2(x))
    x = self.pool(x)
    x = F.relu(self.conv3(x))
    x = self.pool(x)
    x = x.reshape(x.shape[0], -1) # flatten the tensor
    x = F.relu(self.fc1(x))
    x = self.fc2(x)
    return x
```

- train and test on all the original samples
- generation of synthetic heartwood and sapwood samples (after 10000 epochs)
- train the model on 25%, 50%, and 75%, real data simulataneoulsy and test test on the original test set (to get the reference result).
- train the classifier on <u>augmented dataset</u>³ and test on the original test data
- compute and report the contribution of synthetic samples towards accuracy

 $^{^3}$ on 25% original and 75% generated, on 50% original and 50% generated, and 75% original and 25% generated samples

${\rm SpectralGAN} \ {\rm Synthetic} \ {\rm wood} \ {\rm sample} \ {\rm generation}$

Setting-1

- Discriminator training on 25%cubes
- generation of 75% synthetic cubes

$\label{eq:spectralGAN} SpectralGAN \mbox{ Synthetic wood sample generation}$

Setting-1

- Discriminator training on 25%cubes
- generation of 75% synthetic cubes
- Setting-2
 - Discriminator training on 50% cubes
 - generation of 50% cubes

$\label{eq:spectralGAN} SpectralGAN \mbox{ Synthetic wood sample generation}$

Setting-1

- Discriminator training on 25%cubes
- generation of 75% synthetic cubes
- Setting-2
 - Discriminator training on 50% cubes
 - generation of 50% cubes
- Setting-3
 - Discriminator training on of 75% cubes

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ □ つくで

16/43

generation of 25% cubes

Visual Evaluation

▲□ → ▲圖 → ▲ 画 → ▲ 画 → 今 @ ◆

Generation of synthetic samples

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 三 の < で 18/43

Generation of synthetic samples

Figure: The comparison of original samples of Hrt (black) and the GAN generated non-real (red) samples (for training on 75% samples) (a), generated after 1000 epochs and (b) after 10000 epochs

Generation of synthetic samples

<ロト < @ ト < 臣 ト < 臣 ト 三 の < で 19/43

Generation of synthetic samples

Figure: The comparison of original samples of Sap (black) and the GAN generated non-real (red) samples (for training on 50% samples) (a), generated after 1000 epochs and (b) after 10000 epochs (a,b) = (a,b

Generation of synthetic samples

ちゃんら 前 (前を)(曲を)(目を)

Generation of synthetic samples

Figure: The comparison of original samples of Sap (black) and the GAN generated non-real (red) samples (for training on 50% samples) (a), generated after 1000 epochs and (b) after 10000 epochs (a,b) = (a,b

#FeatureIndex

Hrt-25 original profile

<ロ > < 部 > < 差 > < 差 > 差 の < で 21/43

Hrt-25 original profile

ふてん 同 ふぼとうぼう (日)

Generation of synthetic samples (Hrt_25_profile comparison)

<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 23/43

SPECTRALGAN Profile Comparison

#FeatureIndex

Sap-75 original profile

▲ロト ▲御 ▶ ▲注 ▶ ▲注 ▶ ─ 注 = ∽のへで

SPECTRALGAN Profile Comparison

Sap-75 generated profile

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ● ●

SPECTRALGAN Profile Comparison

 Generation of synthetic samples (Sap_75_profile comparison)

<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 26/43

Figure: Comparison of real and generated features on real and augmented dataset (generated after 1000 and 10000 epochs) for Heartwood (25%setting

▲ロト ▲御 ▶ ▲注 ▶ ▲注 ▶ 注 のへで

Figure: Comparison of real and generated features on real and augmented dataset (generated after 1000 and 10000 epochs) for Heartwood (25%setting

▲ロト ▲理 ▶ ▲理 ▶ ▲理 ● ◇ ◇ ◇

Figure: Comparison of real and generated features on real and augmented dataset (generated after 1000 and 10000 epochs) for sapwood (25% setting $\ensuremath{\mathsf{S}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − のへで

Figure: Comparison of real and generated features on real and augmented dataset (generated after 1000 and 10000 epochs) for sapwood (25% setting

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● のへで

SPECTRALGAN Features Comparison

Results

< 고 > < 금 > < 볼 > < 볼 > 월 · < 일 > 월 · < 30/43

Success Metric

True Positives (TPs): 1	False Positives (FPs): 1
False Negatives (FNs): 8	True Negatives (TNs): 90
$\text{Recall} = \frac{TP}{TP + FN} = \frac{1}{1+8} = 0.11$	

Figure: Recall

► Appropriate when minimizing false negatives is the focus.

True Positives (TPs): 1	False Positives (FPs): 1
False Negatives (FNs): 8	True Negatives (TNs): 90
$Precision = \frac{TP}{TP + FP} = \frac{1}{1 + 1} = 0.5$	

• Appropriate when minimizing false positives is the focus.

SPECTRALGAN Evaluation Results

Real Vs Real+Gen (25% or 33 cubes)

	Heartwood			Sapwood		
	Recall	Precision	F_Score	Recall	Precision	F_Score
Real_25%	89.61	94.9 92.68		95.18	90.16	92.60
Real+Gen_25%	93.28	93.26	93.27	93.26	93.28	93.27

Figure: on training on real + gen samples

Figure: on training on real samples

SPECTRALGAN Evaluation Results

Real Vs Real+Gen (50% or 66 cubes)

	Heartwood			Sapwood		
	Recall	Precision	F_Score	Recall	Precision	F_Score
Real_50%	57.51	7.51 98.41 72.60		99.07	69.98	82.07
Real+Gen_50%	86.76	96.45	91.35	96.81	87.97	92.18

Figure: on training on real + gen samples

Figure: on training on real samples

SPECTRALGAN Evaluation Results

Real Vs Real+Gen (75% or 99 cubes)

	Heartwood			Sapwood		
	Recall	Precision	F_Score	Recall	Precision	F_Score
Real_75%	90.22	90.16 90.19		90.15	90.21	90.18
Real+Gen_75%	96.16	77.99	86.13	72.87	94.99	82.47

Figure: on training on real + gen samples

Figure: on training on real samples

Real (all cubes)

	Heartwood			Sapwood		
	Recall Precision F_Score			Recall	Precision	F_Score
Real_100%	94.33	93.50	93.91	93.45	94.28	93.86

- We have discussed in details the importance of data augmentation
- Why we should use GANs for data augmentation
- We empirically show the improvement of results when the model is trained on increased number of samples
- Results are preliminary: we have been exploring multiple strategies, network architectures, optimization parameters, for reaching the maximum improvement.

Thank You!

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ ○ < ○
37/43

SPECTRALGAN Results - with newer generator and training settings (Real Vs Real+Generated)

Training on Real and Real + Generated Samples (25%)

	Heartwood								
		Real (%)		(Generated (%)			
	Recall	Precision	F_Score	Recall	Precision	F_Score			
25_1	93	94	94	93	95	94			
25_2	81	81	81	76	78	77			
25_3	78	76	77	91	77	83			
25_4	93	89	91	93	85	89			
25_5	90	89	90	91	90	90			
25_6	77	79	78	71	79	75			
25_7	92	90	91	94	87	90			
Avg	86	85	86	87	84	85			

Training on Real and Real + Generated Samples (25%)

	Sapwood								
		Real (%)		(Generated (%)				
	Recall	Precision	F_Score	Recall	Precision	F_Score			
25_1	95	93	94	95	93	94			
25_2	81	81	81	78	77	77			
25_3	76	78	77	91	77	83			
25_4	88	93	91	83	93	88			
25_5	89	90	90	90	90	90			
25_6	80	78	79	74	81	77			
25_7	90	92	91	86	93	89			
Avg	85	86	86	85	86	85			

Training on Real and Real + Generated Samples (50%)

	Heartwood								
		Real (%)		(Generated (%)			
	Recall	Precision	F_Score	Recall	Precision	F_Score			
50_1	94	87	90	94	87	90			
50_2	91	91	91	92	88	91			
50_3	96	91	93	88	93	91			
Avg	93	89	91	91	89	90			

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○

Training on Real and Real + Generated Samples (50%)

	Sapwood								
		Real (%)		(Generated (%)			
	Recall Precision F_Score			Recall	Precision	F_Score			
50_1	84	89	87	85	93	89			
50_2	90	91	91	88	92	90			
50_3	90	95	93	94	89	91			
Avg	88	91	90	89	91	89			

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · つ < ↔ 41/43

Training on Real and Real + Generated Samples (75%)

	Heartwood								
		Real (%) Generated (%)							
	Recall	Precision	F_Score	Recall	Precision	F_Score			
75_1	94	89	91	89	95	92			
75_2	84	92	87	87	92	90			
Avg	89	90	89	88	93	91			

・ロ ・ ・ 一戸 ・ ・ モ ト モ ・ 「 ・ つ へ で 42/43

Training on Real and Real + Generated Samples (75%)

	Sapwood								
		Real (%) Generated (%)							
	Recall	Precision	F_Score	Recall	Precision	F_Score			
75_1	88	93	91	95	90	92			
75_2	92	85	88	93	88	90			
Avg	90	89	89	94	89	91			

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <