H2I Workshop – Image Classification using Deep Learning

H2I Workshop 16/09/2021
Outline

• (Very) Brief introduction to ML/DL
• Convolutional Neural Networks (CNNs)
• CNNs Architectures
• Computer Vision Applications
• Segmentation Framework for Hyperspectral Images Classification
What is Machine Learning?

• Machine learning is the science (and art) of programming computers such that they can *learn from data*

• There exist different types of Machine Learning algorithms
 • Supervised
 • Unsupervised
 • Reinforcement learning
What is Deep Learning?

- Deep Learning is an ‘advanced’ form of Machine Learning
- It solves the central problem of **representation learning**
- It introduces hierarchical representations (from simple to complex, from low-level features to high-level features).
Feed Forward Neural Network

• Input neurons -> input data.
• Hidden neurons -> features extraction
• Output neurons -> categories
Outline

• (Very) Brief introduction to ML/DL
• Convolutional Neural Networks (CNNs)
• CNNs Architectures
• Computer Vision Applications
• Segmentation Framework for Hyperspectral Images Classification
Origins

- Convolutional neural networks (CNNs) emerged from the study of the brain’s visual cortex

- David H. Hubel and Torsten Wiesel, recipients of the Nobel Prize in 1981, showed in a series of experiments on cats and monkeys that:
 - Many neurons in the visual cortex react only to a visual stimuli located in a limited region of the visual field (*local receptive field*)
 - Some neurons react only to images of horizontal lines, while others only to lines with different orientations
 - Some neurons react to more complex patterns, that are combinations of lower-level patterns
Origins

- The famous paper by Lecun et al. 1998 introduced:
 - The LeNet-5 architecture, used by banks to recognise handwritten check numbers.
 - New building blocks **convolutional** and **pooling layers**.
 - It introduced the concept of **partially connected layers**.
Convolutional Neural Networks - Intro

• Feed Forward Deep Neural Networks on Large Images
• What will happen if the image has a resolution of 1M pixels?
Convolutional Neural Networks - Intro

- Feed Forward Deep Neural Networks on Large Images
- What will happen if the image has a resolution of 1M pixels?
- In FFNN the input network would be of $1000 \times 1000 \times 3 = 3M$ of inputs! (and much more parameters to learn)
Convolutional Layers

• Neurons in the first convolutional layer are not connected to every single pixel in the input image.

• Each neuron in the second convolutional layer is connected only to neurons located within a small rectangle in the first layer.
Convolutional Layers

• Identify low features and then higher, more abstract, features
Convolution

- Convolution operator allows you to detect features, e.g., (vertical) edges
Filters and Feature Maps
Filters (Kernels)

- Filters to be learned (features extractors)
- Treat the filter's numbers as parameters to be learned by means of back-propagation.
 - Can learn features of filters more robustly
 - Can learn edges that are not only horizontal/vertical
Filters - Convolution

• Convolution operator:
 • Input: a input matrix of dimension n x n, and a filter of dim. f x f
 • Output: a matrix of dim: \((n - f + 1) \times (n - f + 1)\)
Filters - Padding

• Convolution operator:
 • Input: a input matrix of dimension $n \times n$, and a filter of dim. $f \times f$
 • Output: a matrix of dim: $(n - f + 1) \times (n - f + 1)$

• Padding: Add pixels around the image corners
 • Padded with dimension p filled with 0s
 • Output matrix of dim: $(n + 2p - f + 1) \times (n + 2p - f + 1)$
Filters - Stride

• Convolution operator:
 • Input: a input matrix of dimension $n \times n$, and a filter of dim. $f \times f$
 • Output: a matrix of dim: $(n - f + 1) \times (n - f + 1)$

• Padding: Add pixels around the image corners
 • Padded with dimension p filled with 0s
 • Output matrix of dim: $(n + 2p - f + 1) \times (n + 2p - f + 1)$

• Stride: Filter shifted by s positions
 • Output matrix of dim: $(n + 2p - f)/s + 1 \times (n + 2p - f)/s + 1$
2D Convolutions

- Convolutional layers usually have multiple feature maps, and images with three color channels.
- Detecting features or edges in RGB images means to apply convolution over volumes.
2D Convolutions

• Convolution operator on volumes:
 • Input: a input matrix of dimension h x w x 3 (RGB)
 • h x w x c, and a filter of dim. f x f x c
 • Output: a matrix of dim: n-f+1 x n-f+1
2D Convolutions – Multiple Filters

• Convolution operator on volumes with multiple filters:
 • Input
 • a input matrix of dimension h x w x c (c= 3 for RGB)
 • k a filter of dim. f x f x c
 • Output: a matrix of dim: n-f+1 x n-f+1 x k
Layers of a CNN

- Convolutional layers
- Pooling layers
- Fully connected layers
Pooling

- Pooling is used to reduce the size of the representation, to speed the computation, as well as make some of the features that detects a bit more robust.

- Strategies:
 - Max-pooling
 - Avg. pooling
Pooling

• Input:
 • h x w x c

• Output:
 • \((h-f)/s + 1 \times (w-f)/s + 1 \times c\)

• Hyper-parameters
 • f: filter size (common, f=2, f=3)
 • s: stride (commonly, s=2)
 • p: normally not used (i.e., p = 0)

• No parameters to learn/train
Pooling Examples

- **Max**

\[
\begin{bmatrix}
1 & 3 & 2 & 1 \\
2 & 9 & 1 & 1 \\
1 & 3 & 2 & 3 \\
5 & 6 & 1 & 2 \\
\end{bmatrix}
\begin{bmatrix}
9 & 2 \\
6 & 3 \\
\end{bmatrix}
\]

- **Hyper-parameters:**
 - \(f = 2 \)
 - \(s = 2 \)

- **Avg.**

\[
\begin{bmatrix}
1 & 3 & 2 & 1 \\
2 & 9 & 1 & 1 \\
1 & 3 & 2 & 3 \\
5 & 6 & 1 & 2 \\
\end{bmatrix}
\begin{bmatrix}
3.75 & 1.25 \\
4 & 2 \\
\end{bmatrix}
\]

- **Hyper-parameters:**
 - \(f = 2 \)
 - \(s = 2 \)
CNNs Examples
Outline

• (Very) Brief introduction to ML/DL
• Convolutional Neural Networks (CNNs)
• **CNNs Architectures**
• Computer Vision Applications
• Segmentation Framework for Hyperspectral Images Classification
CNNs Architectures – LeNet5

• LeNet-5 a neural network architecture for handwritten and machine-printed digits recognition proposed by (Lecun et al. 1998)
 • Input: 32 x 32 x 1
 • Output: 10 classes
 • It has ~60k parameters
CNN Parameters - Example

<table>
<thead>
<tr>
<th></th>
<th>Act. shape</th>
<th>Act. size</th>
<th>#pars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>$32 \times 32 \times 3$</td>
<td>3072</td>
<td>0</td>
</tr>
<tr>
<td>CONV1 ($f = 5, s = 1$)</td>
<td>$28 \times 28 \times 6$</td>
<td>4704</td>
<td>456</td>
</tr>
<tr>
<td>POOL1 ($f = 2, s = 2$)</td>
<td>$14 \times 14 \times 6$</td>
<td>1176</td>
<td>0</td>
</tr>
<tr>
<td>CONV2 ($f = 5, s = 1$)</td>
<td>$10 \times 10 \times 16$</td>
<td>1600</td>
<td>2416</td>
</tr>
<tr>
<td>POOL2 ($f = 2, s = 2$)</td>
<td>$5 \times 5 \times 16$</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>FC3</td>
<td>120×1</td>
<td>120</td>
<td>48120</td>
</tr>
<tr>
<td>FC4</td>
<td>84×1</td>
<td>84</td>
<td>10164</td>
</tr>
<tr>
<td>softmax</td>
<td>10×1</td>
<td>10</td>
<td>850</td>
</tr>
</tbody>
</table>
CNNs Architectures - AlexNet

- AlexNet (Krizhevsky, Sutskever, and Hinton 2012), the CNN architecture that promoted DL, is similar to LeNet5, but much deeper
 - Input: 227 x 227 x 3
 - Output: 100 classes
 - It has ~138M parameters
CNNs Architectures – Cifar10Net

 • Input: 32 x 32 x 3
 • Output: 10 classes
 • It has ~90k parameters
Outline

• (Very) Brief introduction to ML/DL
• Convolutional Neural Networks (CNNs)
• CNNs Architectures
• Computer Vision Applications
• Segmentation Framework for Hyperspectral Images Classification
Computer Vision Applications

• Classification
• Classification with Localisation
• Object Detection
• Semantic Segmentation
Localisation vs. Detection

- **Object localisation problem**
 - Usually there is one object to be classified and localised
 - Learning a bounding box \((b_x, b_y, b_h, b_w) \)

- **Object detection problem**
 - Usually there are multiple objects
Semantic Segmentation

• In semantic segmentation, each pixel is classified according to the class of the object it belongs to (e.g., road, car, pedestrian, building, etc.)
Fig. 1. Example of HS image of a board of wood. (a) is the display in gray level of the band 0. (b) is the corresponding ground truth (heartwood in red and sapwood in blue).
Semantic Segmentation - Fungi Detection

- clear wood
- brown stain
- correctly classified
- soft rot
- blue stain
- wrongly classified

Ground truth Clear wood Soft rot Brown stain Blue stain
Ground truth Clear wood Soft rot Brown stain Blue stain
Outline

• (Very) Brief introduction to ML/DL
• Convolutional Neural Networks (CNNs)
• CNNs Architectures
• Computer Vision Applications
• Segmentation Framework for Hyperspectral Images Classification
Segmentation Framework for Hyperspectral Images Classification
Segmentation Framework – Spatial Classifier
Adapting an existing network

• The adaptation of a generic image classifier involves two phases
 • Structure adaptation:
 • Handling the input of multitude spectral bands and the classification among the categories into consideration
 • Fine-tuning:
 • Exploiting already performed training on a large dataset
 • Utilize knowledge acquired for one task and leverage it to solve another similar task
Adapting a General Image Classifier

- CNN general image classifier considered is: Cifar10Net
 - Input: 32 x 32 x 2
 - Output: 10 categories
Adapting a General Image Classifier

• CNN general image classifier considered is: Cifar10Net
 • Input: 32 x 32 x 2
 • Output: 10 categories
• Architecture adaptation necessary
 • Input unit
 • Output unit
Adapting a General Image Classifier

• Fine-tuning
 • Different training strategies can be applied
 • The entire network is never trained: input and output units are tuned, with the in-between layers kept frozen
Network Adaptation Example
Thanks!

🏠 https://h2i.inf.unibz.it/
✉️ h2i-fesr@googlegroups.com