H2I Workshop – Image Classification using Deep Learning H2I Workshop 16/09/2021

Fakultät für Informatik Facoltà di Scienze e Tecnologie informatiche Faculty of Computer Science

Outline

- (Very) Brief introduction to ML/DL
- Convolutional Neural Networks (CNNs)
- CNNs Architectures
- Computer Vision Applications
- Segmentation Framework for Hyperspectral Images Classification

What is Machine Learning?

- Machine learning is the science (and art) of programming computers such that they can *learn from data*
- There exist different types of Machine Learning algorithms
 - Supervised
 - Unsupervised
 - Reinforcement learning

What is Deep Learning?

- Deep Learning is an 'advanced' form of Machine Learning
- It solves the central problem of representation learning
- It introduces hierarchical representations (from simple to complex, from low-level features to high-level features).

Feed Forward Neural Network

- Input neurons -> input data.
- Hidden neurons -> features extraction
- Output neurons -> categories

Outline

- (Very) Brief introduction to ML/DL
- Convolutional Neural Networks (CNNs)
- CNNs Architectures
- Computer Vision Applications
- Segmentation Framework for Hyperspectral Images Classification

Origins

Convolutional neural networks (CNNs) emerged from the study of the brain's visual cortex

- David H. Hubel and Torsten Wiesel, recipients of the Nobel Prize in 1981, showed in a series of experiments on cats and monkeys that:
 - Many neurons in the visual cortex react only to a visual stimuli located in a limited region of the visual field (*local receptive field*)
 - Some neurons react only to images of horizontal lines, while others only to lines with different orientations
 - Some neurons react to more complex patterns, that are combinations of lower-level patterns

Origins

- The famous paper by Lecun et al. 1998 introduced:
 - The LeNet-5 architecture, used by banks to recognise handwritten check numbers.
 - New building blocks **convolutional** and **pooling layers**.
 - It introduced the concept of **partially connected layers**.

Convolutional Neural Networks - Intro

- Feed Forward Deep Neural Networks on Large Images
- What will happen if the image has a resolution of 1M pixels?

Convolutional Neural Networks - Intro

- Feed Forward Deep Neural Networks on Large Images
- What will happen if the image has a resolution of 1M pixels?
- In FFNN the input network would be of 1000 * 1000 * 3 = 3M of inputs! (and much more parameters to learn)

Convolutional Layers

- Neurons in the first convolutional layer are not connected to every single pixel in the input image.
- Each neuron in the second convolutional layer is connected only to neurons located within a small rectangle in the first layer

Convolutional Layers

• Identify low features and then higher, more abstract, features

Convolution

 Convolution operator allows you to detect features, e.g., (vertical) edges

10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	

*

1	0	-1	
1	0	-1	
1	0	-1	

=

0 3	_		
0 3	30	30	0
0 3	30	30	0
0 3	30	30	0

Filters and Feature Maps

Filters (Kernels)

- Filters to be learned (features extractors)
- Treat the filter's numbers as parameters to be learned by means of back-propagation.
 - Can learn features of filters more robustly
 - Can learn edges that are not only horizontal/vertical

Filters - Convolution

- Convolution operator:
 - Input: a input matrix of dimension n x n, and a filter of dim. f x f
 - Output: a matrix of dim: $(n f + 1) \times (n f + 1)$

Filters - Padding

- Convolution operator:
 - Input: a input matrix of dimension n x n, and a filter of dim. f x f
 - Output: a matrix of dim: $(n f + 1) \times (n f + 1)$
- Padding: Add pixels around the image corners
 - Padded with dimension p filled with 0s
 - Output matrix of dim: (n + 2p f + 1) x (n + 2p f + 1)

Filters - Stride

- Convolution operator:
 - Input: a input matrix of dimension n x n, and a filter of dim. f x f
 - Output: a matrix of dim: (n f + 1) x (n f + 1)
- Padding: Add pixels around the image corners
 - Padded with dimension p filled with 0s
 - Output matrix of dim: (n + 2p f + 1) x (n + 2p f + 1)
- Stride: Filter shifted by *s* positions
 - Output matrix of dim: (n + 2p f)/s + 1 x (n + 2p f)/s + 1

2D Convolutions

- Convolutional layers usually have multiple feature maps, and images with three color channels
- Detecting features or edges in RGB images means to apply convolution over volumes

2D Convolutions

- Convolution operator on volumes:
 - Input: a input matrix of dimension h x w x 3 (RGB)
 - h x w x c, and a filter of dim. f x f x c
 - Output: a matrix of dim: n-f+1 x n-f+1

6 x 6 x 3

2D Convolutions – Multiple Filters

- Convolution operator on volumes with multiple filters:
 - Input
 - a input matrix of dimension h x w x c (c= 3 for RGB)
 - *k* a filter of dim. f x f x c
 - Output: a matrix of dim: n-f+1 x n-f+1 x k

Layers of a CNN

- Convolutional layers
- Pooling layers
- Fully connected layers

Pooling

- Pooling is used to reduce the size of the representation, to speed the computation, as well as make some of the features that detects a bit more robust.
- Strategies:
 - Max-pooling
 - Avg. pooling

Pooling

- Input:
 - h x w x c
- Output:
 - (h-f)/s +1 x (w-f)/s +1 x c
- Hyper-parameters
 - f: filter size (common, f=2, f=3)
 - s: stride (commonly, s=2)
 - p: normally not used (i.e., p = 0)
- No parameters to learn/train

Pooling Examples

• Max

 $\begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 9 & 1 & 1 \\ 1 & 3 & 2 & 3 \\ 5 & 6 & 1 & 2 \end{bmatrix}$

- 9 2 6 3
- Hyper-parameters:
 - *f* = 2
 - *s* = 2
 - $\begin{bmatrix} 3.75 & 1.25 \\ 4 & 2 \end{bmatrix}$
- Hyper-parameters:

• Avg.

CNNs Examples

Outline

- (Very) Brief introduction to ML/DL
- Convolutional Neural Networks (CNNs)
- CNNs Architectures
- Computer Vision Applications
- Segmentation Framework for Hyperspectral Images Classification

CNNs Architectures – LeNet5

- LeNet-5 a neural network architecture for handwritten and machineprinted digits recognition proposed by (Lecun et al. 1998)
 - Input: 32 x 32 x 1
 - Output: 10 classes
 - It has ~60k parameters

CNN Parameters - Example

	Act. shape	Act. size	#pars
Input	$32 \times 32 \times 3$	3072	0
CONV1 ($f = 5, s = 1$)	28 imes 28 imes 6	4704	456
POOL1 ($f = 2, s = 2$)	14 imes 14 imes 6	1176	0
CONV2 ($f = 5, s = 1$)	10 imes 10 imes 16	1600	2416
POOL2 ($f = 2, s = 2$)	5 imes5 imes16	400	0
FC3	120 imes 1	120	48120
FC4	84 imes 1	84	10164
softmax	10 imes 1	10	850

CNNs Architectures - AlexNet

- AlexNet (Krizhevsky, Sutskever, and Hinton 2012), the CNN architecture that promoted DL, is similar to LeNet5, but much deeper
 - Input: 227 x 227 x 3
 - Output: 100 classes
 - It has ~138M parameter:

CNNs Architectures – Cifar10Net

- Cifar10Net is a simple and architecture used to recognise images from 10 categories, namely 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
 - Input: 32 x 32 x 3
 - Output: 10 classes
 - It has ~90k parameters

Outline

- (Very) Brief introduction to ML/DL
- Convolutional Neural Networks (CNNs)
- CNNs Architectures
- Computer Vision Applications
- Segmentation Framework for Hyperspectral Images Classification

Computer Vision Applications

- Classification
- Classification with Localisation
- Object Detection
- Semantic Segmentation

Localisation vs. Detection

Detection

- Object localisation problem
 - Usually there is one object to be classified and localised
 - Learning a bounding box (b_x, b_y, b_h, b_w)

- Object detection problem
 - Usually there are multiple objects

Semantic Segmentation

 In semantic segmentation, each pixel is classified according to the class of the object it belongs to (e.g., road, car, pedestrian, building, etc.)

Semantic Segmentation - Wood Detection

Fig. 1. Example of HS image of a board of wood. (a) is the display in gray level of the band 6, (b) is the corresponding ground truth (heartwood in red and sapwood in blue).

Semantic Segmentation - Fungi Detection

Outline

- (Very) Brief introduction to ML/DL
- Convolutional Neural Networks (CNNs)
- CNNs Architectures
- Computer Vision Applications
- Segmentation Framework for Hyperspectral Images Classification

Segmentation Framework for Hyperspectral Images Classification

Segmentation Framework – Spatial Classifier

H2I Workshop

Adapting an existing network

- The adaptation of a generic image classifier involves two phases
 - Structure adaptation:
 - Handling the input of multitude spectral bands and the classification among the categories into consideration
 - Fine-tuning:
 - Exploiting already performed training on a large dataset
 - Utilize knowledge acquired for one task and leverage it to solve another similar task

Adapting a General Image Classifier

- CNN general image classifier considered is: Cifar10Net
 - Input: 32 x 32 x 2
 - Output: 10 categories

Adapting a General Image Classifier

- CNN general image classifier considered is: Cifar10Net
 - Input: 32 x 32 x 2
 - Output: 10 categories
- Architecture adaptation necessary
 - Input unit
 - Output unit

Adapting a General Image Classifier

• Fine-tuning

- Different training strategies can be applied
- The entire network is never trained: input and output units are tuned, with the in-between layers kept frozen

Network Adaptation Example

Thanks!

☆ https://h2i.inf.unibz.it/⋈ h2i-fesr@googlegroups.com